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Introduction

Parallel arrays of the bus converters are often used in applications where the output power of a single 
bus converter is not sufficient for the maximum-load conditions. Parallel arrays are very efficient under 
high-load conditions, but can suffer from inefficiency under light-load or no-load operation. This note 
describes a mechanism that minimizes the power dissipation of a VI Chip bus converters array for 
no-load and light-load conditions, while maintaining all of the maximum-load performance. The scope 
of technique and discussion is limited to a maximum BCM® array size to six. Different techniques are 
possible for managing larger arrays which are beyond the scope of this application note. 

Background

Simple Parallel Array of Bus Converters

In a simple parallel array of bus converters (Figure 1), the power input pins (+IN and –IN) and the power 
output pins (+OUT and –OUT) of each bus converter in the array are directly connected together. The 
PC pin of each bus converter are also connected together to allow for synchronous start up and shut 
down of each bus converter in the array. In this type of array, each bus converter start synchronously 
when the common PC pin is allowed to float and each bus converter will share the load current at all 
power levels from light load to full load. 

Figure 1 
Block Diagram of Parallel Bus 

Converter Array
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This simple paralleling of bus converters is commonly used in high-power DC-DC bus conversion. The 
advantages of this common practice are ease of design and lower components count. In such simple 
array, all of the bus converters are always on, which provides maximum current capability for dealing 
with fast-load current increases. On the other hand, it is not effective at limiting no-load power 
dissipation and improving the light-load efficiency.

Improving Light-Load Efficiency with Current-Sensing Control

Reducing the number of active bus converters in an array at no-load or light-load conditions will 
increase efficiency, since each active bus converter consumes a small but measurable amount of power 
at no-load and light-load operating conditions. The bus converters array that reduces the number of 
active bus converters as the load decreases and adds bus converters as the load increases, maximizes 
efficiency. Under low-power conditions, only one bus converter is enabled. As the load current increases 
the current-sensing control circuit switches on additional bus converters to share the load up to the 
maximum load current of the array. 

The control circuit in this solution requires an input signal that is proportional to the load current and 
output signal that controls the primary reference PC pin of the bus converter. PC pin is used to enable or 
disable the bus converter module. The bus converter module (BCM®) is the fixed-ratio DC-DC converter 
which provides the step-down unregulated voltage conversion and step-up current conversion from 
primary to secondary side. Therefore, primary (input) current is proportional to secondary (output) load 
current. Proportionality constant is defined as the ratio of output voltage and input voltage. Therefore 
the primary current provides the indication of the secondary side-load current. The primary (input) 
referenced current sensing control circuit and primary referenced PC pin eliminates the need for an 
isolation device.

Using a technique we will call module-level current-sensing control, a designer can design an array 
where the primary current of each BCM is sensed by a single current-sense resistor inserted into the 
return path of the primary side (–IN) of each BCM. N-1 control circuits are required for an array of N 
BCMs. The input of each control circuit senses the input current proportional to the load current passing 
through the single-sense resistor, and its output enables or disables the next BCM in the array based 
on set threshold levels. The control circuits are designed such that the first BCM in the array is always 
enabled and additional BCMs are added as the load increases. Each control circuit would be designed 
to enable and disable the next BCMs as fixed power levels are reached on both increasing power and 
decreasing power.

This technique has several advantages. The design of the control circuits for each BCM  
is simpler due to commonality in the circuits, the sense resistors consume less power and the 
configuration offers more flexibility to the designer. Lower power dissipation in the current-sense 
resistors is critical because this results in smaller, less expensive components. 

Figure 2 illustrates an array of bus converters designed to provide high output current and utilizing 
module-level current-sensing control to improve the light-load efficiency. This “Eco Array” 
implementation uses N-1 control circuits for the array of N BCMs. The input of the first control circuit 
senses the current passing through Rsense1, the current through the first BCM, and enables or disables 
the second BCM in the array based on the power level of the first BCM. The second control circuit 
senses the current passing through Rsense2, and enables or disables the third BCM in the array based 
on the power level of the second BCM. The current-sense resistor in the last BCM is not necessary for 
current sensing; it is added to balance the voltage drop in the return path of the input current to achieve 
better current-sharing accuracy when all BCMs are ON. The control circuits are also designed to disable 
BCMs sequentially when the sense resistors indicate that the load has decreased.
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Figure 2 
Block Diagram of Parallel BCM 

Array (the Eco Array) 

Let’s understand the process to switch the BCM® on and off sequentially. At no load to 270 Watts 
input power, only BCM1 is active. As the current demand rises above 270 Watts, BCM2 switches on 
and the current is divided equally between BCM1 and BCM2. As the power from BCM2 increases above 
270 Watts (total power of 540 Watts), BCM3 switches on and the power is divided among all three 
converters. So on and so forth. 

As the total power drops below 1200 Watts, BCM6 will be ready to switch off and the current will be 
divided between BCM1 to BCM5 (240W each at 1200W). As the power decreases further, BCM5 will 
be ready to switch off at total power of 800 Watts and current will be divided between BCM1 to BCM4 
(200W each at 800W). So on and so forth. Note that the current level at which BCM switches off is 
different from the level at which it is switched on. This is necessary to prevent BCM from repeatedly 
switching on and off due to the switching noise. It is important to keep the separation between lower 
switch (trip) points to prevent the overlap BCM turn-off events when load decreases. The design of the 
hysteresis in the comparator circuit is a very important part of the design.
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Designing an Eco Array of Bus Converters 

A reference schematic for Eco Array is shown in Figure 3 which shows the location of the current 
sensing control circuits to sense input current of each BCM® and control the next BCMs. The reference 
schematic for each control circuit block is shown in Figure 4. The system will spend a considerable time 
at low or no-load conditions; therefore the converter array is being designed for low-idle power using 
the module level current sensing control.

Selecting Appropriate BCM the Bus Converter from Product Listing

The BCM, an isolated fixed-ratio DC-DC bus-conversion module, is selected based on the following 
electrical parameters:

	n Input voltage range

	n Output voltage range

	n Input to output voltage ratio

	n Rated output power  

To find a BCM to meet a particular design requirement, visit: 
https://www.vicorpower.com/dc-dc/isolated-fixed-ratio/bus-converter-module

Array requires more than one BCM therefore calculate the number of BCM required in parallel array 
from the rated output power of single BCM with 5% de-rating to allow the mismatch in the load 
sharing and specified output power of the parallel array. 

Choosing the Current-Sense Resistors

Figure 3 shows the location of current-sense resistors in the Eco Array with module level current-sensing 
control circuits.  Current-sense resistor tolerances have a significant impact on the overall accuracy 
of the current sharing and set point voltages. It is critical to select these resistors with a tolerance 
consistent with the overall current sharing accuracy desired.

The value of the current-sense resistor must be large enough such that the voltage drop is considerably 
higher than the input offset voltage of the differential amplifier. The sense resistors contribute to 
overall power loss. Their values should be kept low to minimize power dissipation. The maximum value 
of the current-sense resistor based on maximum desired power dissipation is calculated using the 
following equation.

Where:

RSENSE = Resistance of the current-sense resistor in ohms

PRSENSE_MAX
 = Allowed maximum power dissipation in each current-sense resistor in watts. 

  One can allow up to 1W.

VIN = Operating input voltage in volts

h = Efficiency of the bus converter at maximum output power

POUT_MAX = Maximum output power of the bus converter in watts

IIN_MAX = Maximum input current of the bus converter in amps. 
  It can be determined from the respective product data sheet.

All current-sense resistors should be equal for better load sharing. 

RSENSE < (1)
PRSENSE_MAX

 • (VIN)2 • η2

(POUT_MAX)2

RSENSE <
PRSENSE_MAX

 

(IIN_MAX)2

⇒

https://www.vicorpower.com/dc-dc/isolated-fixed-ratio/bus-converter-module
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Table 1 defines the value of current-sense resistor required for various BCMs.

Five current-sense resistors are required for array of six. Last BCM® does not require the current-sense 
resistor, but it is inserted to improve the current-sharing accuracy of each BCM when all six BCMs are 
ON in the array. 384V nominal input BCM requires the XmΩ standard current-sense resistor. For same 
voltage drop and to use the same control circuit, 48V nominal input BCM requires X/8mΩ current-sense 
resistor for BCMs with same rated power. Select standard current-sense resistor for given input voltage 
and allowable power dissipation in resistor. Multiple resistors can be paralleled to get the desired 
resistor value.

Figure 3 
Eco Array of the  

Bus Converter Modules 

Table 1 
Value of Current‑Sense Resistors

Nominal Input Voltage of BCM Current-Sense Resistor (mΩ)

384V (352V, 270V) XmΩ

48V X / 8mΩ
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Designing the Control Circuits 

Each of the control circuits has three blocks as shown in Figure 4. They are (1) the  
differential gain stage which is the input stage, (2) the comparator stage – which is the middle stage 
and (3) the PC logic circuit which is the output stage of the control circuit. 

The BCM® PC pin provides a 5V voltage supply with 2.4mA current drive capability. Since the control 
circuits are very low power, the PC pin is capable of providing the supply voltage for the 
differential -gain circuit, comparator circuit and the voltage-reference circuit. The PC pin voltage 
eliminates need of an external power supply in the array by providing the VCC power to control circuits. 
The external PC Logic circuit also uses a +IN rail to establish the proper logic.  

The voltage reference IC (U1) is a precision, low-power and low drop out 1.25V voltage references 
which is available with accuracy of ±0.2%. The reference voltage is connected to the inverting terminal 
of the op-amp used in the comparator stage. An alternative reference can be substituted if higher 
precision is required, provided that the components are implemented properly. For more information, 
please follow the voltage reference data sheet. Figure 5 shows a circuit for generating a 1.25V voltage 
reference from the PC signal of first BCM in the array.

Selecting the Op-Amp for Differential Amplifier and Comparator Circuits

The op-amp (U2[i]) was selected due to its low input offset voltage, micro-power, cost and small 
package option, which allows the same part to be used for all of the designs recommended in this 
application note.  If the use of a different part is desired, the user should evaluate the parameters of the 
device to ensure that it will function properly and not affect the overall performance.

Figure 4 
The Control Circuits Share a 

Common Topology with a 
Gain Stage, a Comparator Stage 

and a PC Logic Circuit

Figure 5 
Generating 1.25V Voltage 

Reference from 
PC Signal of First BCM
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A low-offset voltage is preferable because this, in combination with the sense resistor tolerance, will 
factor into the trip-point accuracy. Additional considerations include power dissipation, speed and 
output current sinking/sourcing capability. One should use an op-amp with micro power consumption.  
The op-amp output should have enough voltage capability to drive the gate of the logic MOSFET. 
Follow the op-amp manufacturer’s data sheet on decoupling. In general, the op-amp supply terminal 
should always be bypassed locally with a low-ESR capacitor. Do not put more than 1000pF bypass 
capacitance directly at the PC pin of the BCM®. If more capacitance is required, it should be added with 
series resistance between the capacitor and the PC pin as shown in Figure 3.

Differential Gain Stage and Selecting the Gain Resistors

The voltage drop across the current sense resistor is low and the differential gain circuit boosts the 
signal to a level that will work with the comparator circuit. The op-amp is configured as a differential 
amplifier. The input resistors and feedback resistors set the differential voltage gain of the stage. Good 
common-mode rejection and wide common-mode voltage range are important because the amplifier 
works with large, changing common-mode signals.

Differential Gain Stage Control Circuit # i
The gain of the differential current-sense amplifier for ith control circuit is given by the following 
equation, with the assumption that R7 [i] = R10 [i] and R5 [i] = R12 [i].

Where:

AV [i] = Voltage gain of the differential-gain stage in control circuit # i

VPC = PC voltage = 5V

PUTP[i] = BCM[i] input power at which control circuit #i output prepare to enable the    
  BCM [i +1] = Upper trip point for the ith circuit

PLTP [i] = BCM[i] input power at which control circuit #i output prepare to disable the    
  BCM [i +1] = Lower trip point for the ith circuit

R8[i] and R6[i] are hysteresis resistors in control circuit #i

VIN = Operating input voltage

RSENSE = Current-sense resistor

VOD[i] = Output voltage of the differential-gain amplifier in control circuit #i

R5[i] and R7[i] are the differential amplifier gain resistors in control circuit #i

VSENSE[i] = Voltage drop across the current-sense resistor in control circuit #i

AV [i] = (2)
VOD [i]

VSENSE [i]
R5 [i]
R7 [i]

= =

•
VPC

PUTP
 [i] – PLTP

 [i])( R8 [i]
R6

 [i])( •
VIN

RSENSE
)(
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Comparator Stage and Selecting the Hysteresis Resistors

The amplified-sense voltage is available at the differential-gain stage output. It is compared with the 
voltage reference in the comparator stage. The op-amp is configured as a comparator with hysteresis 
with the amplified-sense voltage present on the non-inverting input and the reference voltage at the 
inverting input. The comparator produces a logic-low to logic-high transition of output, when the 
amplified-sense voltage crosses above the voltage reference. This logic-high output will go to the 
positive supply rail of the op-amp. The comparator produces a logic-high to logic-low transition at 
the output, when the sense voltage at the non-inverting terminal of the op-amp crosses below the 
voltage reference. Positive feedback is also added around the comparator to generate the hysteresis. 
The amount of hysteresis is determined by the values of resistors (R6[i], R8[i]) and the 1.25V voltage 
reference. The following equation determines the resistors (R6[i], R8[i]) for ith control circuit.

Determining the Comparator Circuit Values of Control Circuit # i

Where:

VREF = Reference voltage for comparator = 1.25V

All other variables are defined in Equation 2. 

Following Table 2 provides the upper-trip points and lower-trip points for each control circuit to 
calculate the hysteresis resistors and differential-gain resistors. Non-percentage numbers are given as an 
example for 325W rated BCM®.

Selecting the MOSFETS for PC Logic Circuit

When switch Q1B[i] turns on, it pulls PC to SG and draws worst-case 5mA current through 
single BCM PC pin.

Gate threshold voltage is the key parameter for selection of MOSFET Q1A[i] and Q1B[i]. The gate 
threshold voltage for 2N7002V is 1.0V to 2.5V. The maximum rating for the gate-to-source voltage is 
20V and drain-to-source voltage is 60V.

On-state drain current is one more key parameter for selection of Q1A[i] and Q1B[i] under transient 
conditions at corner points. It is good to know the transfer characteristic drain current vs. gate-to-source 
voltage at various junction temperatures, especially in low-threshold gate-to-source voltage range. The 
maximum rating for continuous-drain current is 280mA.

For i = 1 – 5 UTP in terms of Module Input Power LTP in terms of Module Input Power 

Control Circuit [1] 270W, (83%) 70W, (21.5%) 

Control Circuit [2] 270W, (83%)  100W, (30.7%) 

Control Circuit [3] 270W, (83%)  130W, (40.0%) 

Control Circuit [4] 270W, (83%)  160W, (49.2%) 

Control Circuit [5] 270W, (83%) 190W, (58.4%) 

Table 2 
Upper and Lower Threshold 
Levels for Six‑Up Eco Array.

(3)– 1
R6 [i]
R8 [i]

=
VPC • PUTP [i]

(PUTP
 [i] – PLTP

 [i]) • VREF
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Selecting the Diodes, Resistors and Capacitors for PC Logic Circuit

The PC logic circuit drives the PC pin of the next BCM® in the array based on the comparator output. 
The PC Logic stage has an open-drain output that utilizes the internal pull-up resistor of the PC-pin. 
When the comparator output is logic-high, the BCM PC voltage is floating and the BCM is enabled. 
When the comparator output is logic-low, the BCM PC voltage is pulled low and the BCM is disabled. 
This circuit is designed using MOSFETs (Q1A[i], Q1B[i]) and resistors (R4 [i], R9 [i]).

R4 [i] and R9 [i] form a voltage divider between the BCM +IN supply rail and the gate of MOSFET 
Q1B[i] as shown in the schematic of Figure 4 and 8. The voltage at the gate of MOSFET Q1B is given by 
following equation when Q1A is OFF.

It is necessary to keep the gate of MOSFET Q1B above Vgs (max th) under start-up condition at less than 
minimum input voltage turn-on so the MOSFET Q1B turns on before the BCM1 turns ON and disables 
next BCMs by pulling PC LOW. Therefore, the following equation should be true in order for the 
minimum input voltage level to turn BCM2 OFF at no load.

Where:

VIN_MIN_ON = Minimum input voltage required to turn BCM on

VGS_MAX_TH = Maximum gate-to-source threshold voltage for selected MOSFET such as 2N7002V

One can also select these values for 4 – 5V gate-to-source voltage of MOSFET Q01B. Voltage across 
R4 resistor is in the range of HV BCM input voltages. Maximum voltage allowed across 2512 resistor is 
500V. 1206 Resistor can be used for 48V nominal input BCMs. Diodes used in PC logic circuit can be 
small signal logic schottky type diode.  

Understanding the Functionality of Two-BCM Turn-On for Positive Load Transient  
with Staggered BCM Turn-Off  

This PC logic circuit is designed using MOSFETs Q1, resistors R4, R9 and Rx and capacitor C10 to 
generate delay on the falling edge of load. It is necessary to have a proper separation in delay for each 
control circuit to prevent the overlap events of BCM turn-off when load decreases. This circuit should 
also be designed keeping maximum toggle rate of PC in consideration. Sequential staggered turn-off 
of each BCM can be achieved by setting the proper time constant in the output stage of the control 
circuit. The first control circuit has the highest time constant and fifth control circuit has the lowest time 
constant for six-converter array. 

To prevent the overlap turn-off due to the component tolerance in the output stage of the control 
circuit and to allow the minimum restart time [TON1] of the BCM as specified in the data sheet, it 
is important to keep BCM sequential turn-off slower than the turn-on and Eco Array requires, (1) 
Staggered sequential turn-off of all BCMs on falling edge of the load pulse with sufficient separation 
between adjacent BCMs, (2) Two bus converters turn-on instead of one for positive-load transient. 
This is described in timing diagram of Figure 6. Let’s understand why this is important using following 
conceptual-timing diagram in Figure 7. Two-BCM turn-on for positive-load transient can also increase 
the reliability of bus converters by reducing the stress on each BCM in the array in comparison to 
single-BCM turn-on. This scenario for six-BCM array can be achieved using the circuit diagram of 
Figure 8. Following, Table 3 defines the time constant needed for each control circuit to generate the 
extended sequential turn-off. The conceptual timing diagram in Figure 6 is drawn for an array of six bus 
converters. It shows the load-current pulse and the outputs of control circuit 1 – 5, which are the PC 
inputs for BCM2 to BCM6 and indicates the turn-on and turn-off of the BCM2 to BCM6. 

• (VIN)VG1 =
R9

R9 + R4
)(

• (VIN_MIN_ON) ≥ VGS_MAX_TH

R9

R9 + R4
)(

R9 ≥
R4 (4)

VIN_MIN_ON

VGS_MAX_TH

– 1)(
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Figure 6 
Conceptual Timing Diagram 

(Not to Scale)

Figure 7 
Conceptual Timing Diagram 

(Not to Scale)
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Defining Needed Time Constant for Staggered BCM® Turn-Off

Voltage across capacitor C10 during charging and discharging is given by Equation 5 and Equation 6 
respectively for five control circuits.

Where, 

(Keep VTH[i] above the 2.5V maximum threshold of MOSFET Q1B[i])

Where, 

Time Constant Needed for 

Staggered BCM Turn-Off

Minimum Time to Reach 

the VGSTHMIN = 1V to Turn 

MOSFET Q1B[i] ON 

Using Equation 5

Typical Time to Reach the 

VGSTHTYP = 1.76V to Turn 

MOSFET Q1B[i] ON 

Using Equation 5

Maximum Time to Reach 

the VGSTHMAX = 2.5V to Turn 

MOSFET Q1B[i] ON 

Using Equation 5

Control Circuit [5] 2 seconds 0.575 second T6 = 1.159 seconds 1.962 seconds

Control Circuit [4] 8 seconds 2.301 seconds T5 = 4.638 seconds 7.847 seconds

Control Circuit [3] 28 seconds 8.055 seconds T4 = 16.234 seconds 27.463 seconds

Control Circuit [2] 97 seconds 27.905 seconds T3 = 56.242 seconds 95.140 seconds

Control Circuit [1] 333 seconds 95.798 seconds T2 = 193 seconds 326.616 seconds

Table 3 
Defines the Time Constant 

Needed for Staggered 
BCM Turn‑Off 

for Six‑Up Array

VCC10 [i] = VTH [i] (5)))( (
1 – l

t[i]
τC [i]–

RTH [i] = + RX [i] =  RX [i]

for R4||R9 << RX [i]

(5a)R4 [i]R9 [i]
R4 [i] + R9 [i]

(5b)
R9 [i]

R4 [i] + R9 [i]
VTH [i] = VIN = 4V)(

(5c)τC [i] = RTH [i] C10 [i]

VDC10 [i] = VTH [i] (6)))( (
l

t[i]
τD[i]–

τD [i] = RDSON C10 [i]
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Figure 8 
Control Circuit Diagram for  

Six‑Up Array

How a Control Circuit Works

Let’s understand how a circuit in Figure 8 works for ECO Array of six bus converters. At no load to 
270W input power, only BCM1 is active. As the current demand rises above 270W input power, output 
of the comparator in the first control circuit transition from logic low to logic high, capacitor C10 in the 
first control circuit discharged through diode D1 and RDSON of MOSFET Q1A in the first control circuit 
and MOSFET Q1B in the first control circuit turns off and switches the BCM2 ON. The first control circuit 
primarily enables the BCM2. But at the same time capacitor C10 in the second control circuit discharge 
through diode D2 in second control circuit and RDSON of MOSFET Q1A in the first control circuit and 
MOSFET Q1B in the output stage of the second control circuit turns off and switches the BCM3 ON. 
BCM2 and BCM3 switch on and the current is divided equally between BCM1, BCM2 and BCM3 (90W 
each at 270W input power). Lower threshold of control circuit 1 has to be at least 10W lower than 
90W for proper functionality of the array. BCM1, BCM2 and BCM3 share the load up to 810W input 
power. At 810W input power, output of the comparator in the second and third control circuit transition 
from logic low to logic high, capacitor C10 in the third control circuit discharged through diode D1 and 
RDSON of MOSFET Q1A in the third control circuit. Same capacitor C10 in the third control circuit also 
discharged through D2 in third control circuit and RDSON of MOSFET Q1A in the second control circuit 
and MOSFET Q1B in the third control circuit turns off and switch the BCM4 ON. 
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The third control circuit primarily enables the BCM4. But at the same time capacitor C10 in the fourth 
control circuit discharged through the D2 in the fourth control circuit and RDSON of MOSFET Q1A in 
the third control circuit and MOSFET Q1B in the output stage of the fourth control circuit turns off and 
switch the BCM5 ON. BCM4 and BCM5 switch ON and the current is divided equally between BCM1, 
BCM2, BCM3, BCM4 and BCM5 (162W each at 810W input power). Lower threshold of control circuit 
1 – 3 has to be at least 10W lower than 162W for proper functionality of the array. BCM1, BCM2, 
BCM3, BCM4 and BCM5 share the load up to 1350W input power. At 1350W input power, output of 
the comparator in the fourth and fifth control circuit transition from logic low to logic high, capacitor 
C10 in the fifth control circuit discharges through diode D1 and RDSON of MOSFET Q1A in fifth control 
circuit. Same capacitor C10 also discharged through diode D2 in the fifth control circuit and RDSON of 
the MOSFET Q1A in the fourth control circuit and MOSFET Q1B in the output stage of the fifth control 
circuit turns off and switches the BCM6 ON. BCM6 switch ON and the current is divided equally 
between all six BCMs® (225W each at 1350W input power). Lower threshold of control circuit 1 – 5 has 
to be at least 10W lower than 225W for proper functionality of the array. All six BCMs share the load 
up to 1950W full load power. Hysteresis diagram for above circuit is shown in Figure 9 for array of six 
bus converters.

As the total input power drops to 1140W (190W times 6), comparator output in the fifth control circuit 
transitions from high logic to low logic. BCM6 is ready to switch off and the current will be divided 
between BCM1 to BCM5 (228W each at 1140W input power) after staggered BCM6 turn-off. As the 
input power decreases further to 800W (160W times 5), comparator output in the fourth control circuit 
transitions from high logic to low logic. BCM5 is ready to switch off and current will be divided between 
BCM1 to BCM4 (200W each at 800W input power) after staggered BCM5 turn-off. As input power 
decreases further to 520W (130W times 4), comparator output in the third control circuit transitions 
from high logic to low logic. BCM4 is ready to switch off and current will be divided between BCM1 
to BCM3 (173.33W each at 520W input power) after staggered BCM4 turn-off. As input power 
decreases further to 300W (100W times 3), comparator output in the second control circuit transitions 
from logic high to logic low. BCM3 is ready to switch off and current will be divided between BCM1 
to BCM2 (150W each at 300W input power) after staggered BCM3 turn-off. As the input power 
further decreases to 140W (70W times 2), comparator output in the first control circuit transitions from 
logic high to logic low. BCM2 is ready to switch off and current will be transferred to BCM1 (at 140W 
input power) after staggered BCM2 turn-off. Note that the current level at which BCM switches off is 
different from the level at which it is switched on. This is necessary to prevent BCM from repeatedly 
switching on and off due to the switching noise. It is important to keep the enough separation between 
lower-switch (trip) points of all circuits to prevent the overlap BCM turn-off events when load decreases. 
The design of the hysteresis in the comparator circuit is a very important part of the design.

Figure 9 
Hysteresis Diagram
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Design Considerations

Application note AN: 005 provides board layout guidelines for using VI Chip® components. Additional 
consideration must be given to the external control circuit components. The current-sense resistor 
voltage – on the order of milivolts – is highly sensitive to noise. The control circuit should be located as 
close as possible to the sense resistor to minimize noise pick up through the sense lines. A four-terminal 
Kelvin contact is recommended for best results, eliminating the error caused by solder resistance from 
the resistor to the current-carrying connection on the PCB. The control signal from the sense circuit to 
the BCM should be shielded by enclosing them between power planes, power and ground plane or 
ground planes. Avoid grounding of the control circuits both side of the low side current-sense resistor 
to prevent a short circuit and to allow the single-point ground reference for each control circuit that ties 
together the input-supply ground. 

Keep the output power plane as symmetrical as possible at the output for better current-sharing 
accuracy. Use of wider traces for power planes (+IN, –IN, +OUT, –OUT) is recommended to allow more 
current. Cu thickness less than 1oz should be avoided due to current density in the traces. Resistance 
introduced by power traces particularly on the output of the BCM® can be minimized by allocating the 
multiple layers for current-carrying traces, assigning 2 – 3oz Cu weight to current-carrying traces and 
using wider and shorter current-carrying traces.  

The worst-case PC-to-VOUT enable delay is 240ms (T1) for B384F120T30. The delay from the upper-trip 
point to PC high is 0.2ms. Total delay is 240.2ms. Delay limits the load-current slew rate to 20.8A/s. If 
the load-current slew rate is more than 20.8A/s, then it’s possible that the load current will hit the BCM 
power limit (current limit) and the BCM can go through the restart sequence. It is necessary to apply 
load with a slew rate of less than 20.8A/s to prevent a multiple restart situation. 

The worst-case PC-to-VOUT enable delay is 150μs for a VTM2-based BCM such as VIB0002TFJ. It is 
recommended that load-current slew rates are more than 20.8A/s and less than 21A/ms. Addition of 
C10 can also affect the BCMs turn-off during the falling edge of load current. So VTM1 based designs 
are beyond the scope of this app note. Keeping more than one BCM ON at no load at some cost of light 
load efficiency can increase the load-current slew rate further. So there is a tradeoff between light-load 
efficiency and slew-rate of the load current. In addition, increase in the upper-threshold levels also puts 
the maximum limit on load-current slew rate. All these points needs to be considered while designing 
the control circuits for proper operation.

The Eco Array using module current-sensing technique (as shown here) limits the number of bus 
converters in the array to six. Different design techniques can be incorporated to increase the number 
of bus converters in a parallel array, but they are beyond the scope of this application note. Following 
hysteresis number in Figure 10 with six control circuits can increase the number of bus converters in the 
array to seven.

Six-sigma accuracy of upper and lower threshold levels can be improved by selecting lower-tolerance 
resistors, using a high-precision voltage reference, minimizing variations in input voltage and PC voltage 
and using a lower offset voltage op-amp with good common-mode rejection and wide common-mode 
voltage range for amplifier.

Figure 10 
Hysteresis Diagram
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Efficiency and Power Dissipation for Six-Up Eco Array and  
Simple Parallel Array 

Figure 11 compares the efficiency of a simple-parallel array with that of an Eco Array of Six 384V – 48V 
BCMs® over the output-power range. The light-load efficiency can be improved up to 20% under 
light-load conditions using eco array. Figure 12 shows that no-load power dissipation of eco array is 
lower by 31W for six 384V – 48V BCMs using the module current-sensing technique.

Figure 11 
Efficiency of Eco Array and 

Simple Parallel Array

Figure 12 
Power Dissipation in Eco Array 

and Simple Parallel Array
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Design Example

An application requires the bus converters be placed in parallel for higher power up to 1800W. 
A 384V nominal output voltage of PFC front-end drives the bus converter array. The output of the bus 
converters array drives 48V nominal input voltage load.

Selecting Appropriate BCM® from Product listing

Ratio of input voltage to output voltage is close to 8. The BCM384F480T325A00 provides a fixed ratio 
of 8 and 325W rated output power. Operating 384V input voltage falls within the input voltage range 
of BCM384F480T325A00 as specified in the product data sheet. Operating 48V output voltage also 
falls within the output voltage range of the BCM384F480T325A00.   

Determine the number of BCMs required in parallel array

N = number of bus converters required in the parallel array =   

Choosing the Current-sense Resistors

Using Equation 1

Choose the standard current-sense resistor value lower than 0.250Ω.

All current-sense resistors are equal to 0.1Ω 1% 1W rated. 

Selecting the Components Value for five Control Circuits for 384 V input voltage

Selecting the Hysteresis Resistors R6 and R8

Using Equation 3 and Table 2

 

1st Control Circuit

2nd Control Circuit

3rd Control Circuit

4th Control Circuit

5th Control Circuit

1800W
0.95 • 325W

= 5.82 = 6

RSENSE < = = 0.25Ω
PRSENSE_MAX

 

(IIN_MAX)2
0.25
12

– 1
R6 [i]
R8 [i]

=
VPC • PUTP [i]

(PUTP
 [i] – PLTP

 [i]) • VREF

– 1 = 4.4  ⇒  R8 [1] = 10kΩ, 1%  ⇒   R6 [1] = 44.2kΩ, 1% 
R6 [1]
R8 [1]

=
5V • 270W

(270W – 70W) • 1.25V

– 1 = 5.3529  ⇒  R8 [2] = 10kΩ, 1%  ⇒   R6 [2] = 53.6kΩ, 1% 
R6 [2]
R8 [2]

=
5V • 270W

(270W – 100W) • 1.25V

– 1 = 6.7142  ⇒  R8 [3] = 10kΩ, 1%  ⇒   R6 [3] = 66.5kΩ, 1% 
R6 [3]
R8 [3]

=
5V • 270W

(270W – 130W) • 1.25V

– 1 = 8.8181  ⇒  R8 [4] = 10kΩ, 1%  ⇒   R6 [4] = 88.7kΩ, 1% 
R6 [4]
R8 [4]

=
5V • 270W

(270W – 160W) • 1.25V

– 1 = 12.5  ⇒  R8 [5] = 10kΩ, 1%  ⇒   R6 [5] = 124kΩ, 1% 
R6 [5]
R8 [5]

=
5V • 270W

(270W – 190W) • 1.25V
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Selecting the Differential Current-Sense Amplifier Resistors R5 and R7 for 384V Input Voltage

Using Equation 2, Table 2 and hysteresis resistors R6[i] and R8[i]   

 

1st Control Circuit

2nd Control Circuit

3rd Control Circuit

4th Control Circuit

5th Control Circuit

Selecting the Resistors and Capacitors for PC Logic Circuit for 384V Input Voltage  

Using Equation 4 and 5b, R4 and R9 are selected:

Using Equation 5b,

R5 [i]
R7 [i]

= •
VPC

PUTP
 [i] – PLTP

 [i])( R8 [i]
R6

 [i])( •
VIN

RSENSE
)(

R5 [1]
R7 [1]

= •
5V

270W – 70W )( 1
4.4)( •

384V
0.1Ω )( = 21.8181  ⇒  R7 [1] = 10kΩ, 1%  ⇒   R5 [1] = 221kΩ, 1% 

R5 [2]
R7 [2]

= •
5V

270W – 100W)( 1
5.3529)( •

384V
0.1Ω )( = 21.0991  ⇒  R7 [2] = 10kΩ, 1%  ⇒   R5 [2] = 210kΩ, 1% 

R5 [3]
R7 [3]

= •
5V

270W – 130W
1

6.7142
•

384V
0.1Ω

= 20.4258  ⇒  R7 [3] = 10kΩ, 1%  ⇒   R5 [3] = 205kΩ, 1% )( )( )(
R5 [4]
R7 [4]

= •
5V

270W – 160W)( 1
8.8181)( •

384V
0.1Ω )( = 19.7940  ⇒  R7 [4] = 10kΩ, 1%  ⇒   R5 [4] = 196kΩ, 1% 

R5 [5]
R7 [5]

= •
5V

270W – 190W)( 1
12.5)( •

384V
0.1Ω )( = 19.2  ⇒  R7 [5] = 10kΩ, 1%  ⇒   R5 [5] = 191kΩ, 1% 

R9 ≥ ≥ =
R4

VIN_MIN_ON

VGS_MAX_TH

– 1

1

)(
R9

R4

8.6956
1000

⇒ 

⇒  R4 = 1MΩ, 1%, 1W, 2512

⇒  R9 ≥ 8.6956kΩ

290
2.5

– 1

R9 [i]
R4 [i] + R9 [i]

VTH [i] = VIN ⇒ 4V = 384V ⇒ R9 = 10.5kΩ, 1%)( R9

1MΩ + R9
)(
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Selecting the Resistors RX[i] and Capacitors C10[i] using Equation 5a and 5c for Needed Time 
Constant for Staggered BCM Turn-Off as Specified in Table 3 

 

1st Control Circuit

2nd Control Circuit

3rd Control Circuit

4th Control Circuit

5th Control Circuit

For all control circuit

Eco Array Demonstration System

The designed Eco Array demonstration system, for proof of concept, has an interesting feature that 
allows the system to shut down the unused bus converters at no load and light load and bring them 
up as load demands. This would benefit the light-load efficiency of parallel bus converters. This system 
has ability to manage up to a total of six bus converters. With the system’s ability to monitor the input 
current of each bus converter, it is possible to control each bus converter to meet the needs of the load. 
In light-load condition, it is possible for the eco array system to turn-off five out of six bus converters 
which will improve the efficiency at light-load operating conditions.

τC [i] = RX [i] C10 [i]

τC [1] = RX [1] C10 [1] = 333 ⇒ RX [1] = 1.6MΩ ⇒ C10 [1] = 208.125µF

τC [2] = RX [2] C10 [2] = 97 ⇒RX [2] = 1.6MΩ ⇒ C10 [2] = 60.625µF

τC [3] = RX [3] C10 [3] = 28  ⇒ RX [3] = 1.6MΩ ⇒ C10 [3] = 17.5µF

τC [4] = RX [4] C10 [4] = 8 ⇒ RX [4] = 1.6MΩ ⇒ C10 [4] = 5µF

τC [5] = RX [5] C10 [5] = 2 ⇒ RX [5] = 1.6MΩ ⇒ C10 [5] = 1.25µF

RY [i] = (6.25 to 10) • RX [i]  ⇒  RY [1] = RY [2] = RY [3] = RY [4] = RY [5] = 10MΩ 
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All guidance and content herein are for illustrative purposes only. Vicor makes no representation or 
warranty that the products and/or services described herein will be suitable for the specified use without 
further testing or modification. You are responsible for the design and operation of your applications 
and products using Vicor products, and Vicor accepts no liability for any assistance with applications or 
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