

Solving Power Design Challenges in the Age of Al

Jeff Chang

What's happened – 2016 to 2024

Powering high performance processors

- Modern processors (GPU, CPU, NPU) need a lot of current...
- Increasing PDN distribution losses Decreases in power efficiency
- Significant operating performance reduction if power demands are not met
- Added complexity of decreasing operating voltages as move continue to lower fabrication nodes

Progression of processor peak current requirements and lower operating voltages

Conduction Loss in PCB

PCB Trace Resistance Equation:

$$R = \frac{\rho L}{TW} [1 + \alpha (Tamb - 25^{\circ}C)]$$

- R is the resistance
- L is the length of the trace
- T is the thickness of the trace
- W is the width of the trace
- Tamb is the ambient temperature

$$R = \frac{V}{I}$$

T7

VICOR

Voltage Regulator to the Processor Losses

Example with PCB resistance of 400uOhm (VR at 0.8Vout)

VICOR

Space Constraints Challenge

- OAM and custom AI accelerator cards
 - PCB size limitations
 - On-board memory blockage
- Network switch processors
 - High speed transceiver blockage
- Cluster computing
 - Wafer Scale Engine
 - PCB level xPU grid fabric

VICOR

Conventional multiphase

- Conversion performed by DrMOS/Inductor
- High conversion ratio (min. 12:1)
- Challenging to scale for higher currents
- Phase unbalancing
- Noise generation
- Size prohibits reducing PDN

Global Energy Crisis

Global Energy Crisis

Flexible Product Specifications for Versatile Combinations

Variety of PRMs

- 20x10mm = 250W
- 23x14mm = 500W
- 37x18mm = 1000W

Scalable VTMs

- 22x8mm = 125A
- 34x8mm = 250A
- 42x8mm = 325A

NEW Scalable MCMs 100A~ 1000A

VICOR

Power Delivery Networks

With Different Power Delivery Architecture

With Different Power Delivery Architecture

With Different Power Delivery Architecture

Lateral Power Delivery

Lateral-Vertical Power Delivery

PDN Resistance (Ohms)

PDN Resistance (Ohms)

PDN Resistance (Ohms)

Thank you

- <u>https://www.tomshardware.com/tech-industry/nvidias-h100-gpus-will-consume-more-power-than-some-countries-each-gpu-consumes-700w-of-power-35-million-are-expected-to-be-sold-in-the-coming-year</u>
- https://countryeconomy.com/energy-and-environment/electricity-consumption

